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The addition theorem for radiative multipole operators, i.e., electric-dipole, electric-
quadropole, or magnetic-dipole, etc., is derived through a translational transformation.
The addition theorem of µth component of the angular momentum operator, Lµ(r), is
also derived as a simple expression that represents a general translation of the angu-
lar momentum operator along an arbitrary orientation of a displacement vector and
when this displacement is along the Z-axis. The addition theorem of the multipole oper-
ators is then used to analytically evaluate the matrix elements of the electric and mag-
netic multipole operators over the basis functions, the spherical Laguerre Gaussian-type
function (LGTF), Ll+(1/2)n (αr2)rlYlm(r̂)e−αr2

. The explicit and simple formulas obtained
for the matrix elements of these operators are in terms of vector-coupling coefficients
and LGTFs of the internuclear coordinates. The matrix element of the magnetic multi-
pole operator is shown to be a linear combination of the matrix element of the electric
multipole operator.

KEY WORDS: Addition theorem, multipole operators, translational expansion, matrix
element

1. Introduction

To study the lifetime and decay mechanism of excited molecules via radi-
ative transitions [1], one must calculate the radiative transition probability per
unit time from an initially excited state �i to final states �f . The total transition
probability is in terms of transition matrix elements of radiative operators, i.e.,
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electric-dipole, electric-quadrupole, or magnetic-dipole, etc., over the electronic
wave functions of the initial and final states [2, 3]. These electronic wave func-
tions are expanded as linear combinations of atomic orbitals and are therefore,
multi-centered. The atomic orbitals refer to various nuclear centers and the radi-
ative operators are centered at the center of mass of the molecule [2]. Conse-
quently, the transition matrix elements of the radiative operators for a molecule
are multi-centered.

In this work we will develop a technique to analytically evaluate these
multi-center transition matrix elements of the radiative operators for a homo-
nuclear diatomic molecule (the results derived here are also applicable to poly-
atomic molecules), by expanding the radiative operators from the center of mass
to nuclear centers. The translational expansion is essentially an addition theorem
for these operators.

Although the addition theorems as three-dimensional Taylor expansions for
various functions are well known [4], we have not encountered many examples
of translational expansion of operators (especially differential operators, such as
the angular momentum operator) in the literature. Chiu [2] was able to expand
the spherical components of magnetic-dipole operators, Lm(m = 0,±1), from the
center of mass of a molecule to atomic centers in a right-handed coordinate sys-
tem along the z-axis, also taken to be the internuclear axis. In this work, how-
ever, we will derive the addition theorem for the magnetic multipole operator
which contains the angular momentum operator. To carry out this expansion,
the angular momentum operators will be expanded along an arbitrary direction
which reduces to Chiu’s result along the z-axis.

In section 2, we will review multipole radiation [5, 8] and present the gen-
eral form for electric and magnetic multipole operators, as well as the addition
theorem for these operators.

In section 3, we will apply the addition theorem to analytically evalu-
ate the radiative transition matrix elements of these operators over spherical
Laguerre Gaussian Type Function (LGTF) [4, 6, 7], Ll+(1/2)n (αr2)rlYlm(r̂)e−αr

2
,

where Ll+(1/2)n (αr2) is a generalized Laguerre polynomial and Ylm(r̂)is the well-
known spherical harmonic.

2. The addition theorem for multipole operators

The interaction Hamiltonian for the electron j of spin S, momentum P, and
position r moving in an electromagnetic field with vector potential A is given as
follows [3, 8, 9]:

Hq(rj ) = −
(

ej

2mjc

) {
gl[Aq(rj ) · Pj + Pj · Aq(rj )] + gs

–h Sj · ∇xAq(rj )
}
. (2.1)
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In the above equation, ej and mj refer to the charge and the mass of the elec-
tron j , respectively. Furthermore, c is the velocity of light in vacuum, gl and gs
are the orbital and the spin g-factors, respectively, and q refers to the polariza-
tion of light. The first term describes the interaction between the electromagnetic
field of light and the orbital motion of electron j , while the second term refers to
the interaction between the light and the spin of electron j . We choose the space-
fixed Z-axis to be the direction of light propagation so that Aq(rj ) = êqeikzj , k =
2πν/c, and êq is the unit vector of the polarization and is defined as follows:

ê±1 = ∓
(

1√
2

)
(x̂ ± iŷ), ê0 = êz. (2.2)

Here ê+1 and ê−1 represent right and left circular polarization, respectively, and
ê0 represents the linear polarization along the Z-axis.

Expanding Aq(rj ) in terms of vector spherical harmonics, for circularly
polarized light propagating along the Z-axis with wavelength long compared
with molecular dimension, we obtain the following multipole expansion of the
interaction Hamiltonian:

Hq(rj ) = −
∑
l

(i)l(k)l

(2l − 1)!!

√
l + 1

2l

{
(Elm + E′

lm)− iq(Mlm +M ′
lm)

}
, (2.3)

where Elm and E′
lm, respectively, are the charge and spin contribution to the elec-

tric mutipole radiation with parity of (-)l. Similarly, Mlm and M ′
lm, respectively,

are the orbital and spin contributions to the magnetic radiation having the parity
of (-)l+1. The explicit form of these multipole operators, in the long-wavelength
approximation [5] (kr � 1) with β = e–h/2mc, is given as follows [5, 9]:

Elm(rj ) = −
√

4π
2l + 1

βj

k
gl

[∇Ylm(rj ) · ∇ + ∇ · ∇Ylm(rj )
] ∼=

√
4π

2l + 1
ejglYlm(rj ),

(2.4a)

Mlm(rj ) =
√

4π
2l + 1

(
2βjgl
l + 1

)
∇Ylm(rj ) · L = 2βjgl (4πl)

1/2

l + 1

×
∑
µ

C(l − 1, 1,l;m− µ,µ)Yl−1,m−µ(rj )Lµ(rj ), (2.4b)

E′
lm(rj ,Sj ) = −

[
4π

2l + 1

]1/2

LYlm(rj ) · Sj = −
√

4πl
(l + 1)(2l + 1)

kβjgs

×
∑
µ

C(l, 1, l;m− µ,µ)Yl,m−µ(rj )Sµ, (2.4c)
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M ′
lm(rj ,Sj ) =

√
4π

2l + 1
βjgs∇Ylm(rj ) · Sj =

√
4πlβjg

×
∑
µ

C(l − 1, 1, l;m− µ,µ)Yl−1,m−µ(rj )Sµ. (2.4d)

In the above equations, Ylm(rj ) = rljYlm(r̂j ), is the solid harmonics referred to
the space-fixed coordinate system, and Lµ (r) is the µth (µ = 0,±1) spherical
component of the angular momentum operator given by:

L±1 = ∓ 1√
2
(Lx + iLy), L0 = Lz. (2.5)

In this work, we will focus our attention on the matrix elements of the radi-
ative operators Elm(rj ) and Mlm(rj ), i.e.

〈
ψ(rA)

∣∣∣Ô(r)∣∣∣ψ(rB)
〉
. Here ψ(rA) and

ψ(rB) are LGTF atomic orbitals referring to nuclear centers A and B, respec-
tively, and Ô(r) is the electric or magnetic radiative operator in equations (2.4a)
and (2.4b), referred to the center of mass of the molecule. In order to evaluate
the matrix elements, we will expand the radiative operators from the center of
mass to the atomic centers using the addition theorems for these operators.

The translation of the radiative multipole operator, Ô(r), by R can be writ-
ten as [10]

Ô(r + R) = eR·∇Ô(r)e−R·∇, (2.6)

which is basically a unitary transformation of the operator Ô(r) by the transla-
tion operator eR·∇ .
This follows from the fact that the exponential operator, eR·∇ = eiR· ∇

i , is unitary
since the operator R · ∇

i
is Hermitian [11]. Equation (2.6) can be expressed in

terms of commutator brackets, as follows [12]:

Ô(r + R) = eR·∇Ô(r)e−R·∇ = Ô(r)+
[
R · ∇, Ô(r)

]

+1
2

[
R · ∇,

[
R · ∇, Ô(r)

]]
+ · · · (2.7)

In the case of the electric multipole operator given in equation (2.4a), the addi-
tion theorem can be written as [4] (see Appendix A)

Ylm(r + R) = eR·∇Ylm(r)e−R·∇

= 4π
l∑

l1=0

∑
m1

(
(l1)!(l − l1)!(2l + 1)!

(l)!(2l1 + 1)!(2l − 2l1 + 1)!

)
Z(l, l1, l − l1;m,m1)

Y∗
l1m1
(R)Yl2−l1,m+m1(r), (2.8)
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where the Gaunt coefficient denoted by Z in the above equation, is used in
the coupling rule for spherical harmonics and is given in terms of the Clebsch–
Gordan coefficients [4, 6] by the following expression:

Z(l1l2l3;m1m2m3) =
[
(2l1 + 1)(2l2 + 1)

4π(2l3 + 1)

]1/2

C(l1l2l3;m1m2m3)C(l1l2l3; 000).

(2.9)

The addition theorem for the magnetic multipole operator, as given in equation
(2.4b), is given by (see Appendix A)

Mlm(r + R) = 4πBl
∑
µ

l−1∑
l′=0

∑
m′
αlml′m′µY∗

l′m′(R)Yl−l′−1,m−µ+m′(r)

×
{
Lµ(r)+

(
4π
3

) √
2

∑
ν

(−1)ν+µC(111; ν − µ,µ)× Y1ν(R)Y1,µ−ν(∇)
}
,

(2.10)

where αlml′m′µ is given in equation (A15).
The quantity inside the curly bracket in equation (2.10), represents the trans-
lational expansion of the µth component of the angular momentum operator,
Lµ(r).

3. The Laguerre Gaussian-type function (LGTF) and the matrix elements
of the radiative multipole operators

3.1. The laguerre gaussian-type function (LGTF)

The spherical LGTF, ψa
nalama

(rA), used here as the basis function in the
matrix elements of the radiative operators, is defined as follows [4,6,7]:

ψa
nalama

(rA) = CanalaL
la+(1/2)
na

(ar2
A)e

−ar2
AYlama (rA), (3.1)

where the constant Canala is given by

Canala = (−1)na22na+la (na!)(a)na+la (3.2)

and the generalized Laguerre polynomial, Lla+(1/2)na (ar2
A), is defined as

Lla+(1/2)na
(ar2

A) =
na∑
t=0

(
na + la + 1/2

na − t

)
(−ar2

A)
t

t !
(3.3)

and

Ylama (rA) = r
la
AYlama (r̂A) (3.4)

is the solid harmonics. The coordinate of electron referring to nuclear center A
is rA = r − A.
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The spherical LGTF in equation (3.1) can be generated by operating a general-
ized gradient operator on a Gaussian exponential function as follows [6, 13, 14]:

Ynlm(∇A)e
−ar2

A = (−1)lYnlm(∇rA)e
−ar2

A = ψa
nlm(rA), (3.5)

where the generalized spherical gradient operator,

Ynlm(∇) = ∇2nYlm(∇) (3.6)

is defined by replacing the components of the variable r, i.e., x, y, and z in the
homogeneous solid harmonics, Ynlm(r) = r2nYlm(r), with the components of the
corresponding gradient operator, i.e., ∂/∂x, ∂/∂y, ∂/∂z. The differential operators
with respect to the Cartesian coordinates of the nuclear center A = (Ax,Ay,Az)

and the electronic coordinate rA = (xA, yA, zA) are ∇A and ∇rA , respectively. As
irreducible tensor operators on the same kinematic space, the spherical gradient
operators, follow the coupling rule for solid harmonics [6,11], viz.,

Yn1l1m1(∇)Yn2l2m2(∇) =
∑
l

Z(l1l2l;m1m2)Ynl,m1+m2(∇), (3.7)

where

2n+ l = 2n1 + 2n2 + l1 + l2 (3.8)

and the Z coefficient, the coupling coefficient of two spherical harmonics, is
given in equation (2.9).

Combining equations (3.5) and (3.7), we have

Yn1l1m1(∇)ψa
n2l2m2

(r) = (−1)l2
∑
l

Z(l1l2l;m1m2)ψ
a
nl,m1+m2

(r), (3.9)

where n is given by equation (3.8).
In order to evaluate the matrix elements, we will make use of the well-

known Gaussian product theorem [15] which states that the product of two s-
type Gaussians having different centers A and B is itself a Gaussian (apart from
a constant factor) with a center P, located somewhere on the line connecting
center A to center B, i.e., RAB. Specifically,

e−ar
2

Ae−br
2
B = e−σabR

2
ABe−pr2

P , (3.10)

where

σab = ab

a + b
, p = (a + b), RAB = B − A and rP = r − P. (3.11)

Center P is the weighted mean point of A and B and is given as [6]

P = αA + βB, (3.12)

where α = a/(a + b) and β = b/(a + b).
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The Gaussian product theorem in equation (3.10) can be verified by making use
of equations (3.11) and (3.12), and replacing rA with rA = rP + RAP and rB with
rB = rP + RBP, where rP = r − P = αrA + βrB,RAP = P − A, and RBP = P − B.
RAP and RBP are position vectors pointing from centers A and B to center P,
respectively.
From equations (3.5) and (3.10), the product of two electronic LGTFs, centered
at A and B may be factored into a nuclear part and an electronic part as follows:
[6,13,14]

ψa∗
nalama

(rA)ψ
b
nblbmb

(rB) = [Ynalama
∗(∇A)Ynblbmb(∇B)e

−σab R2
AB ]e−pr2

P .

= [(−1)lb+ma
∑
lab

Z(lalblab; −mamb)

×Ynala,−ma+mb(∇A)e
−σabR2

AB ]e−pr2
P

= [(−1)lb+ma
∑
lab

Z(lalblab; −mamb)ψσab
nablab,mab

(RAB)]e−pr2
P ,

(3.13)

where mab = mb −ma and 2nab = 2na + 2nb + la + lb − lab.
In deriving equation (3.13) we have used the transformation Ynblbmb(∇B) =
(−1)lBYnblbmb(∇A), and subsequently we have coupled the two nuclear gradient
operators of the same argument using equation (3.17). The final result contain-
ing ψσab

nablab,mab
(RAB) is obtained by using equation (3.5).

3.2. Matrix element of the electric multipole operator

Using equation (2.4a), the matrix element of the electric multipole operator can
be written as

〈
ψa
nalama

(rA) |Elm(rC)|ψb
nblbmb

(rB)
〉 = Al

∫
ψa∗
nalama

(rA)Ylm(rC)ψ
b
nblbmb

(rB)dτ,

(3.14)

where

Al =
√

4π
2l + 1

egl. (3.15)

The coordinate of an electron referred to nuclear center B is rB = r − B
and rC = r − C is the coordinate of the same electron with respect to the center
of mass C (which can be taken as the center of nuclei A and B by a very good
approximation). The coordinates at centers A, B, and C are mutually parallel
and also parallel to a frame of reference which may be arbitrary or space-fixed.
These coordinate systems are all right-handed. The atomic center A is displaced
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from center B through a vector RAB and the center of mass C is separated from
the weighted center P through vector RCP, as follows:

RAB = B − A = rA − rB and RCP = P − C = rC − rP. (3.16)

Here RAB is the vector from A to B, and RCP is the vector pointing from center
C to center P.

The integral on the right-hand side of equation (3.14) is a three-center inte-
gral. To evaluate this integral, first we expand the solid harmonics, Ylm(rC), refer-
ring to the center of mass of the molecule, to the weighted center P by using the
vector identity in equations (3.16) and (A4) (see Appendix A),

Ylm(rC) = Ylm(RCP + rP) = eRCP·∇rp Ylm(rP)

= 4π
l∑

l1=0

∑
m1

[
(l1)!(l − l1)!(2l + 1)!

(l)!(2l1 + 1)!(2l − 2l1 + 1)!

]

×Z(l, l1, l − l1;m,m1)Y∗
l1m1
(RCP)Yl−l1,m+m1(rP). (3.17)

The three-center integral on the right-hand side of equation (3.15) becomes

∫
ψa∗
nalama

(rA)Ylm(rC)ψ
b
nblbmb

(rB)dτ = 4π
l∑

l1=0

∑
m1

[
(l1)!(l − l1)!(2l + 1)!

(l)!(2l1 + 1)!(2l − 2l1 + 1)!

]

×Z(l, l1, l − l1;m,m1)Y∗
l1m1
(RCP)

×
∫
ψa∗
nalama

(rA)Yl−l1,m+m1(rP)ψ
b
nblbmb

(rB)dτ.

(3.18)

Applying equation (3.13) for the product of LGTFs and the transformation
Ynblbmb(∇B) = (−1)lBYnblbmb(∇A) [6] and subsequently making use of the coupling
rule in equation (3.7) for Ynalama (∇A) and Ynblbmb(∇A), we find that the integral
on the right-hand side of equation (3.18) becomes∫

ψa∗
nalama

(rA)Yl−l1,m+m1(rP)ψ
b
nblbmb

(rB)dτ

= (−1)lb+ma
π

2(a + b)3/2
×

∑
lab

Z(lalblab; −mamb)

×ψσab
nablab,mab

(RAB)× δl1,lδm1,−m.
(3.19)

Making use of equations (3.18) and (3.19), the matrix element of electric multi-
pole operator in equation (3.14) becomes

〈
ψa
nalama

(rA) |Elm(rC)|ψb
nblbmb

(rB)
〉 = Al I

lallb
mammb

(RAB,RCP), (3.20)
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where Al is given in equation (3.15) and

I lallbmammb
(RAB,RCP) =

∫
ψa∗
nalama

(rA)Ylm(rC)ψ
b
nblbmb

(rB)dτ

= (−1)lb+ma+m
(

π

a + b

)3/2 ∑
lab

Z(lalblab; −mamb)

×Ylm(RCP)ψ
σab
nablabmab

(RAB) (3.21)

is a three-center matrix element of the electric multipole operator, Ylm(rC).
In the above equation,

mab = mb −ma and 2nab = 2na + 2nb + la + lb − lab.

3.3. Matrix element of the magnetic multipole operator

The matrix element of the magnetic multipole operator is written as

〈
ψa
nalama

(rA) |Mlm(rC)|ψb
nblbmb

(rB)
〉 =

∫
ψa∗
nalama

(rA)Mlm(rC)ψ
b
nblbmb

(rB)dτ, (3.22)

where the magnetic operator Mlm is defined in equation (2.4b) and is referred
to the center of mass C. The coordinate of electron referred to center C is rC =
r−C. The LGTFs ψa

nalama
(rA) and ψb

nblbmb
(rB) are defined by equation (3.1). Using

equation (2.10) for the addition theorem of the magnetic operator and the vector
identity rC = RCB + rB, the magnetic multipole operator Mlm in equation (3.22)
is expanded at center B as

〈
ψa
nalama

(rA) |Mlm(rC)|ψb
nblbmb

(rB)
〉 = 4πBl

∑
µ

l−1∑
l′=0

∑
m′
αlml′m′µY∗

l′m′(RCB)

×
{∫

ψa∗
na lama

(rA)Yl−l′−1,m−µ+m′(rB)Lµ(rB)ψ
b
nblbmb

(rB)dτ

+
√

32
9
π

∑
ν

(−1)ν+µC(111; ν − µ,µ)Y1ν(RCB)

×
∫
ψa∗
na lama

(rA)Yl−l′−1,m−µ+m′(rB)Y1,µ−ν(∇rB )ψ
b
nblbmb

(rB)dτ
}
.

(3.23)

Using equation (3.1) and the well-known result of operating the angular momen-
tum operator Lµ(r) on the spherical harmonic Ylm(r̂) [5,11],

Lµ(rB)ψ
b
nblbmb

(rB) = (−1)µ [lb(lb + 1)]1/2

×C(lb1lb;mb + µ,−µ)ψb
nblbmb+µ(rB) (3.24)
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the first integral containing the angular momentum operator Lµ(rB) in equation
(3.23) becomes

∫
ψa∗
nalama

(rA)Yl−l′−1,m−µ+m′(rB)Lµ(rB)ψ
b
nblbmb

(rB)dτ

= (−1)µ [lb(lb + 1)]1/2 C(lb1lb;mb + µ,−µ)
×I l,l−l′−1,lb

ma,m−µ+m′,mb+µ(RAB,RBP). (3.25)

In the above equation,

I
l,l−l′−1,lb
ma,m−µ+m′,mb+µ(RAB,RBP) =

∫
ψa∗
nalama

(rA)Yl−l′−1,m−µ+m′(rB)ψ
b
nblbmb

(rB)dτ

= (−1)lb+ma+m−µ+m′
(

π

a + b

)3/2

×
∑
lab

Z(lalblab; −mamb + µ)Yl−l′−1,m−µ+m′(RBP)

× ψ
σab
nablabmab

(RAB), (3.26)

where mab = mb+µ−ma and 2nab = 2na +2nb+ la + lb− lab is a two-center elec-
tric multipole integral which can be easily derived from the three-center electric
multipole integral given in equation (3.21) by replacing center C with B, l with
l − l′ − 1, and m with m− µ+m′.

Making use of equation (3.9) for the gradient operator Y1,µ−ν(∇rB) operat-
ing on the LGTF ψb

nblbmb
(rB),

Y1,µ−ν(∇rB)ψ
b
nblbmb

(rB) = (−1)lb
∑
j

Z(1lbj ;µ− ν,mb)ψ
b
nj,mb+µ−ν(rB), (3.27)

where 2n+ j = 2nb + lb + 1,
we see that the second integral containing the gradient operator Y1,µ−ν(∇rB) in
equation (3.23) becomes

∫
ψa∗
nalama

(rA)Yl−l′−1,m−µ+m′(rB)Y1,µ−ν(∇rB)ψ
b
nblbmb

(rB)dτ

= (−1)lb
∑
j

Z(1lbj ;µ− ν,mb)I
la,l−l′−1,j
ma,m−µ+m′,mb+µ−ν(RAB,RBP).

(3.28)
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In this equation, I la,l−l
′−1,j

ma,m−µ+m′,mb+µ−ν(RAB,RBP) is a two-center electric multipole
integral and is given by

I
la,l−l′−1,j
ma,m−µ+m′,mb+µ−ν(RAB,RBP) =

∫
ψa∗
nalama

(rA)Yl−l′−1,m−µ+m′(rB)ψ
b
nj,mb+µ−ν(rB)dτ

= (−1)j+ma+m−µ+m′
(

π

a + b

)3/2

×
∑
lab

Z(laj lab; −mamb + µ− ν)Yl−l′−1,m−µ+m′

×(RBP)ψ
σab
nablabmab

(RAB),

(3.29)

where mab = mb + µ− ν −ma and 2nab = 2na + 2n+ la + j − lab.
Finally, the matrix element of the magnetic multipole operator in equation

(3.23), after using equations (3.25) and (3.28), becomes

〈
ψa
nalama

(rA) |Mlm(rC)|ψb
nblbmb

(rB)
〉 = 4πBl

∑
µ

l−1∑
l′=0

∑
m′
αlml′m′µY∗

l′m′(RCB)

×
{
(−1)µ [lb(lb + 1)]1/2 C(lb1lb;mb + µ,−µ)

×I l,l−l′−1,lb
ma,m−µ+m′,mb+µ(RAB,RBP)+

√
32
9
π

∑
ν

(−1)ν+µC(111; ν − µ,µ)

×Y1ν(RCB)(−1)lb
∑
j

Z(1lbj ;µ−ν,mb)I la,l−l
′−1,j

ma,m−µ+m′,mb+µ−ν(RAB,RBP)


, (3.30)

where Bl and αlml′m′µ are given by equations (A5) and (A15), respectively.
The matrix element of the magnetic multipole operator becomes a linear

combination of two-center electric multipole matrix element, I (RAB,RBP), as
shown in equation (3.30).

A. Discussion

The three-dimensional translation operator, TR = eR·∇ = e
i–h R·P

,where P
is the linear momentum operator, is a linear operator whose effect is to shift
the coordinates by a constant distance R. The effect of this operator on a func-
tion f(r), is to generatef (r + R) = eR·∇f (r) by doing a three-dimensional Taylor
expansion of f around r [4]. However, in the case of an operator, or a function
of an operator Ô(r), the effect of the translation operator is to transform the
operator into Ô(r + R) = eR·∇Ô(r)e−R·∇ , which is equivalent to a unitary trans-
formation of the operator Ô(r).
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In this work, the operator Ô(r) represents the electric multipole operator,
Ylm(r), and the magnetic multipole operator which is the electric multipole oper-
ator coupled with the angular momentum operator, Yl,m(r)Lµ(r).

It is shown in Appendix A that the unitary transformations of these opera-
tors lead to translational expansions, also known as addition theorems for these
operators given by equations (A4) and (A15). These results are obtained by Tay-
lor expansion of the exponential operators in eR·∇Ô(r)e−R·∇ , leading to the com-
mutation relationships in equation (A1) [10,12]. These addition theorems are
then used to analytically evaluate the matrix elements of the electric and mag-
netic operators, centered at the center of mass C, over the LGTFs, ψa∗

nalama
(rA)

and ψb
nblbmb

(rB), respectively.
To evaluate the matrix element of the electric multipole operator, which is a

three-center integral, the operator, Ylm(rC), was expanded using equation (3.17),
from the center of mass to a weighted mean point P, as defined by equation
(3.12). This gives rise to the integral shown in equation (3.18). Making use of
equation (3.13), the expression for the matrix element is now reduced to a lin-
ear combination of LGTF of internuclear coordinate RAB, ψ

σab
nablab,mab

(RAB), and
a one-center electronic integral which is easily integrated. This one-center inte-
gral containing the electronic Gaussian exponential factor with respect to cen-
ter P, i.e., e−pr2

p , and the electric multipole operator with respect to rp,Ylm(rP),
when integrated, will truncate the summations which were generated in the first
step by the expansion of the solid harmonic from center of mass C into cen-
ter P. The final result for the electric multipole matrix element is quite sim-
ple and it only contains one finite summation over the LGTF of internuclear
coordinate RAB,ψ

σab
nablabmab

(RAB), and the solid harmonic of internuclear distance
RCP ,Ylm(RCP).

It should also be mentioned that expanding the operators from the center
of mass C into either nuclear centers A or B, or vise versa, did not generate
simple expressions and also the intermediate integrals were tedious. One obvious
reason for this difficulty is due to the fact that when this expansion (from C to
either A or B) is carried out, the solid harmonic of the electronic coordinate of
the new center, Ylm(rA) or Ylm(rB), generated through the addition theorem in
equation (A4), will be coupled with the LGTF of center A or B to generate a
function that is not a LGTF.

In the case of matrix element of the magnetic multipole operator, the mag-
netic operator was expanded from the center of mass to atomic center B by
using the addition theorem of this operator as given by equation (A15) in
Appendix A. The expansion generated a linear combination of intermediate inte-
grals which were finally reduced to the two-center electric multipole matrix ele-
ments. These two-center integrals were easily evaluated using the three-center
matrix elements of electric operators evaluated in section 3.2. The final results
are in terms of finite summation over vector-coupling coefficients and functions
of internuclear coordinates.
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Appendix A: addition theorems for electric and magnetic multipole operators

For any two non-commuting operators X and Y, we have [12]

eXYe−X = Y + [X,Y] + 1
2

[X, [X,Y]] + · · · , (A1)

where eX = 1 + X + X2

2! + · · · , is the exponential operator and [X,Y] = XY − YX
is the commutator of operators X and Y. Equation (A1) can be verified by the
Taylor expansion of eX and e−X. Writing equation (A1) in a compact form, we
have [16]

eXYe−X =
∑
n

xn

n!
Y = eXY (A2)

in which xnYdenotes the commutator nested to the nth degree,

xnY = [X, [X, [X, . . . [X,Y] . . . ]]].

When X is a differential operator, as it is in our case, (i.e., X = R · ∇), equation
(A2) becomes

eXYe−X =
∑
n

Xn

n!
Y = eXY (A3)

a result that is valid only because operator X possesses the derivation property
[17]. It may be easily verified by induction for n = 0, 1, 2, . . . in Eq. (A2). For
example,

x0Y = Y, xY = [X,Y] = XY, x2Y = [X, [X,Y]] = X2Y, etc.

Making use of equation (A3) for the electric multipole operator, which is effec-
tively a solid harmonics operator, we have the well-known result for the addition
theorem of solid harmonics [4,6],

Ylm(r + R) = eR·∇Ylm(r)

= 4π
l∑

l1=0

∑
m1

(
(l1)!(l − l1)!(2l + 1)!

(l)!(2l1 + 1)!(2l − 2l1 + 1)!

)

×Z(l, l1, l − l1;m,m1)Y∗
l1m1
(R)Yl−l1,m+m1(r), (A4)

where the Z coefficient is given by equation (2.9).
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To derive the addition theorem for magnetic multipole operator, Mlm(r), in
equation (2.4b), we note that the translation operator eR·∇ transforms the oper-
ator Mlm(r) into eR·∇Mlm(r)e−R·∇ [5,10–12],

Mlm(r + R) = eR·∇Mlm(r)e−R·∇ = Bl
∑
µ

C(l − 1, 1,l;m− µ,µ)

×eR·∇Yl−1,m−µ(r)Lµ(r)e−R·∇, (A5)

where Bl = 2βj gl(4πl)1/2

l+1 .

We also note that

eR·∇Yl−1,m−µ(r)Lµ(r)e−R·∇ = eR·∇Yl−1,m−µ(r)e−R·∇eR·∇Lµ(r)e−R·∇

= Yl−1,m−µ(r + R)Lµ(r + R), (A6)

so that

Mlm(r + R) = Bl
∑
µ

C(l − 1, 1,l;m− µ,µ)Yl−1,m−µ(r + R)Lµ(r + R). (A7)

To complete the addition theorem for this operator, we now need to derive an
expression for Lµ(r + R), the µth spherical component of the angular momen-
tum operator given in equation (2.5). Replacing X with R · ∇ and Y with Lµ(r)
in equation (A1), we have

Lµ(r + R) = eR·∇Lµ(r)e−R·∇ = Lµ(r)+ [R · ∇, Lµ]

+1
2

[R · ∇, [R · ∇, Lµ]] + · · · (A8)

Using the expansion of R · ∇ in terms of its spherical components [11],

R · ∇ =
∑
ν

Rν∇−ν =
(

4π
3

) ∑
ν

(−1)νY1ν(R)Y1,−ν(∇), (A9)

where we have used ∇−ν =
√

4π
3 Y1,−ν(∇) and Rν is defined similarly, the commu-

tator [R · ∇, Lµ(r)] can be expressed as,

[
R · ∇, Lµ(r)

] =
(

4π
3

) ∑
ν

(−1)νY1ν(R)
[
Y1,−ν(∇), Lµ(r)

]
. (A10)

Y1,−ν(∇) is the spherical gradient operator [6,13,14], which is obtained by replac-
ing the Cartesian component of the variable r in the solid harmonic Y1,−ν(r) with
the corresponding components of the gradient operator ∇, for example,

Y1,±1(∇) = ∓
√

3
8π

(
∂

∂x
± i

∂

∂y

)
and Y10(∇) =

√
3

4π
∂

∂z
.



M. Moharerrzadeh et al. / Matrix elements of radiative multipole operators 71

Making use of Racah’s definition of irreducible tensor operators [5,11],
[
Y1,−ν(∇), Lµ(r)

] =
√

2(−1)µC(111; ν − µ,µ)Y1,µ−ν(∇). (A11)

One finds that the basic commutator [R · ∇, Lµ(r)] in equation (A10) becomes

[
R · ∇, Lµ(r)

] =
√

2
(

4π
3

) ∑
ν

(−1)ν+µC(111; ν − µ,µ)Y1ν(R)Y1,µ−ν(∇).

(A12)

By using equations (A9) and (A12), it can easily be seen that the operator R · ∇
commutes with the commutator [R · ∇, Lµ], so that the doubly nested commuta-
tor [R·∇, [R·∇, Lµ]], as well as all nested commutators of higher degree in equa-
tion (A8), vanish. The substitution of these results into equation (A8) reduces
the addition theorem for the µth component of the angular momentum opera-
tor to the more simple form,

Lµ(r + R) = eR·∇Lµ(r)e−R·∇ = Lµ(r)+ [R · ∇, Lµ]

= Lµ(r)+
(

4π
3

) √
2

∑
ν

(−1)ν+µC(111; ν − µ,µ)Y1ν(R)Y1,µ−ν(∇).

(A13)

The importance of this rather simple result is that it represents a general trans-
lation of the angular momentum operator along an arbitrary orientation of
position vector R. It is interesting to note that when R is along the Z axis,

Y1ν(R) =
√

3
4π Rδν,0, and equation (A13) now becomes

Lµ(r + R) = Lµ(r)+
√

2(−1)µC(111; −µ,µ)R∇µ, (A14)

where we have used, Y1µ(∇) =
√

3
4π∇µ. Equation (A14) represents the transla-

tion of the µth component of the angular momentum operator along the Z-axis,
which is in agreement with Chiu’s result [2].
Upon substituting equations (A4) and (A13) in equation (A7), the addition the-
orem for the magnetic multipole operator may now be written as

Mlm(r + R) = 4πBl
∑
µ

l−1∑
l′=0

∑
m′
αlml′m′µY∗

l′m′(R)Yl−l′−1,m−µ+m′(r)
{
Lµ(r)+

√
32
9
π

×
∑
ν

(−1)ν+µC(111; ν − µ,µ)× Y1ν(R)Y1,µ−ν(∇)
}
, (A15)

where αlml′m′µ = (l′)!(2l−1)!(l−l′−1)!
(l−1)!(2l′+1)!(2l−2l′−1)!C(l − 1, 1, l;m − µ,µ)Z(l − 1, l′, l − l′ − 1;

m− µ,m′).
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For translation along the Z-axis, equation (A15) is simplified, since Y∗
l′m′(R) =

(−1)m
′√

3/4πRl
′
δm′,0 and Y1ν(R) =

√
3

4π Rδν,0. By using these expressions for the
solid harmonics of argument R, the addition theorem of the magnetic multipole
operator as given in equation (A15), can be expressed as

Mlm(r + R) =
√

12πBl
∑
µ

l−1∑
l′=0

αlml′0µR
l′Yl−l′−1,m−µ(r){Lµ(r)

+
√

2(−1)µC(111; −µ,µ)R∇µ}. (A16)
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